Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Planet formation is expected to be severely limited in disks of low metallicity, owing to both the small solid mass reservoir and the low-opacity accelerating the disk gas dissipation. While previous studies have found a weak correlation between the occurrence rates of small planets (≲4R⊕) and stellar metallicity, so far no studies have probed below the metallicity limit beyond which planet formation is predicted to be suppressed. Here, we constructed a large catalog of ∼110,000 metal-poor stars observed by the TESS mission with spectroscopically derived metallicities, and systematically probed planet formation within the metal-poor regime ([Fe/H] ≤−0.5) for the first time. Extrapolating known higher-metallicity trends for small, short-period planets predicts the discovery of ∼68 super-Earths around these stars (∼85,000 stars) after accounting for survey completeness; however, we detect none. As a result, we have placed the most stringent upper limit on super-Earth occurrence rates around metal-poor stars (−0.75 < [Fe/H] ≤ −0.5) to date, ≤ 1.67%, a statistically significant (p-value = 0.000685) deviation from the prediction of metallicity trends derived with Kepler and K2. We find a clear host star metallicity cliff for super-Earths that could indicate the threshold below which planets are unable to grow beyond an Earth-mass at short orbital periods. This finding provides a crucial input to planet-formation theories, and has implications for the small planet inventory of the Galaxy and the galactic epoch at which the formation of small planets started.more » « less
-
Abstract We present the discovery of TOI-6303b and TOI-6330b, two massive transiting super-Jupiters orbiting a M0 and a M2 dwarf star, respectively, as part of the Searching for Giant Exoplanets around M-dwarf Stars (GEMS) survey. These were detected by NASA’s Transiting Exoplanet Survey Satellite and then confirmed via ground-based photometry and radial velocity observations with the Habitable-zone Planet Finder. TOI-6303b has a mass of 7.84 ± 0.31MJ, a radius of 1.03 ± 0.06RJ, and an orbital period of 9.485 days. TOI-6330b has a mass of 10.00 ± 0.31MJ, a radius of 0.97 ± 0.03RJ, and an orbital period of 6.850 days. We put these planets in the context of super-Jupiters around M dwarfs discovered from radial-velocity surveys, as well as recent discoveries from astrometry. These planets have masses that can be attributed to two dominant planet formation mechanisms—gravitational instability and core accretion. Their masses necessitate massive protoplanetary disks that should either be gravitationally unstable, i.e., forming through gravitational instability, or be among the most massive protoplanetary disks known to date to form objects through core accretion. We also discuss their possible migration mechanisms via their eccentricity distribution.more » « less
-
Abstract We present the confirmation of TOI-5573 b, a Saturn-sized exoplanet on an 8.79 days orbit around an early M dwarf (3790 K, 0.59R⊙, 0.61M⊙, 12.30 Jmag). TOI-5573 b has a mass of M⊕(0.35 ± 0.06MJup) and a radius of 9.75 ± 0.47R⊕(0.87 ± 0.04RJup), resulting in a density of g cm−3, akin to that of Saturn. The planet was initially discovered by the Transiting Exoplanet Survey Satellite (TESS) and confirmed using a combination of 11 transits from four TESS Sectors (20, 21, 47, and 74), ground-based photometry from the Red Buttes Observatory, and high-precision radial velocity data from the Habitable-zone Planet Finder and NN-EXPLORE Exoplanet Investigations with Doppler spectrographs, achieving a 5σprecision on the planet’s mass. TOI-5573 b is one of the coolest Saturn-like exoplanets discovered around an M-dwarf, with an equilibrium temperature of only 528 ± 10 K, making it a valuable target for atmospheric characterization. Saturn-like exoplanets around M dwarfs likely form through core accretion, with increased disk opacity slowing gas accretion and limiting their mass. The host star’s supersolar metallicity supports core accretion, but uncertainties in M-dwarf metallicity estimates complicate definitive conclusions. Compared to other GEMS (Giant Exoplanets around M-dwarf Stars) orbiting metal-rich stars, TOI-5573 b aligns with the observed pattern that giant planets preferentially form around M-dwarfs with supersolar metallicity. Further high-resolution spectroscopic observations are needed to explore the role of stellar metallicity in shaping the formation and properties of giant exoplanets like TOI-5573 b.more » « less
-
Abstract We report the discovery of a close-in (Porb= 3.349 days) warm Neptune with clear transit timing variations (TTVs) orbiting the nearby (d= 47.3 pc) active M4 star, TOI-2015. We characterize the planet's properties using Transiting Exoplanet Survey Satellite (TESS) photometry, precise near-infrared radial velocities (RVs) with the Habitable-zone Planet Finder Spectrograph, ground-based photometry, and high-contrast imaging. A joint photometry and RV fit yields a radius , mass , and density for TOI-2015 b, suggesting a likely volatile-rich planet. The young, active host star has a rotation period ofProt= 8.7 ± 0.9 days and associated rotation-based age estimate of 1.1 ± 0.1 Gyr. Though no other transiting planets are seen in the TESS data, the system shows clear TTVs of super-period and amplitude ∼100 minutes. After considering multiple likely period-ratio models, we show an outer planet candidate near a 2:1 resonance can explain the observed TTVs while offering a dynamically stable solution. However, other possible two-planet solutions—including 3:2 and 4:3 resonances—cannot be conclusively excluded without further observations. Assuming a 2:1 resonance in the joint TTV-RV modeling suggests a mass of for TOI-2015 b and for the outer candidate. Additional transit and RV observations will be beneficial to explicitly identify the resonance and further characterize the properties of the system.more » « less
-
Abstract Gaia astrometry of nearby stars is precise enough to detect the tiny displacements induced by substellar companions, but radial velocity (RV) data are needed for definitive confirmation. Here we present RV follow-up observations of 28 M and K stars with candidate astrometric substellar companions, which led to the confirmation of two systems, Gaia-4b and Gaia-5b, identification of five systems that are single lined but require additional data to confirm as substellar companions, and the refutation of 21 systems as stellar binaries. Gaia-4b is a massive planet (M = 11.8 ± 0.7MJ) in aP = 571.3 ± 1.4 day orbit with a projected semimajor axisa0 = 0.312 ± 0.040 mas orbiting a 0.644 ± 0.02M⊙star. Gaia-5b is a brown dwarf (M = 20.9 ± 0.5MJ) in aP = 358.62 ± 0.20 days eccentrice = 0.6423 ± 0.0026 orbit with a projected angular semimajor axis ofa0 = 0.947 ± 0.038 mas around a 0.34 ± 0.03M⊙star. Gaia-4b is one of the first exoplanets discovered via the astrometric technique, and is one of the most massive planets known to orbit a low-mass star.more » « less
An official website of the United States government
